Gergely Tamás, Balogh G, Horváth F, Vancsics B, Beszédes Á, Gyimothy T.
2018. Differences Between a Static and a Dynamic Test-to-Code Traceability Recovery Method. Software Quality Journal. 27(2):797-822.
Page last modified: September 26, 2019
Gyimesi P, Vancsics B, Stocco A, Mazinanian D, Beszédes Á, Ferenc R, Mesbah A.
2019. BugsJS: a Benchmark of JavaScript Bugs. 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST). :90-101.
Page last modified: September 26, 2019
Csuvik V, Kicsi A, Vidács L.
2019. Source Code Level Word Embeddings in Aiding Semantic Test-to-Code Traceability. Proceedings of the 10th International Workshop on Software and Systems Traceability, (SST 2019 @ ICSE). :29-36.
Page last modified: October 1, 2019
Horváth F, Lacerda VSchnepper, Beszédes Á, Vidács L, Gyimothy T.
2019. A New Interactive Fault Localization Method with Context Aware User Feedback. Proceedings of the First International Workshop on Intelligent Bug Fixing (IBF 2019). :23-28.
Page last modified: September 19, 2019
Csuvik V, Kicsi A, Vidács L.
2019. Evaluation of Textual Similarity Techniques in Code Level Traceability. Proceedings of the 19th International Conference on Computational Science and Its Applications (ICCSA 2019). :529-543.
Page last modified: October 1, 2019
Kicsi A, Csuvik V, Vidács L, Horváth F, Beszédes Á, Gyimothy T, Kocsis F.
2019. Feature Analysis using Information Retrieval, Community Detection and Structural Analysis Methods in Product Line Adoption. Journal of Systems and Software. 155:70-90.
Page last modified: October 1, 2019
Tóth L, Nagy B, Janthó D, Vidács L, Gyimothy T.
2019. Towards an Accurate Prediction of the Question Quality at Stack Overflow Using a Deep-Learning-Based NLP Approach. Proceedings of ICSOFT 2019, 14th International Conference on Software Technologies. :631-639.
Page last modified: October 1, 2019
Kicsi A, Rákóczi M, Vidács L.
2019. Exploration and Mining of Source Code Level Traceability Links on Stack Overflow. Proceedings of ICSOFT 2019, 14th International Conference on Software Technologies. :339-346.
Page last modified: October 1, 2019
Tóth L, Vidács L.
2019. Study of The Performance of Various Classifiers in Labeling Non-Functional Requirements. Information Technology and Control. 48:1-16.
Page last modified: September 19, 2019
Ferenc R, Hegedűs P, Gyimesi P, Antal G, Bán D, Gyimothy T.
2019. Challenging Machine Learning Algorithms in Predicting Vulnerable JavaScript Functions. 7th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering. :8-14.
Page last modified: September 17, 2019